
Nevin Dong 董乃文
Principle Technical Evangelist

Microsoft Cooperation

Microservices Docker Containers

Docker Image

Docker Registry

Docker Hub

Azure Container Registry

Bounded Context

API Gateway

Event Bus

Commands

Events

Docker Host

Azure Container Service

Azure Service Fabric

Kubernetes

Docker Swarm

Mesos DC/OS

Linux Containers

Windows Containers

Domain Events

Mediator

Aggregates

Domain Entity

CQRS simplified

Domain-Driven Design

Message Brokers

RabbitMQ

Azure Service Bus

NServiceBus

MassTransit

Hyper-V ContainersAsync. communication

Brighter

Stateful Services

Actors

Orchestrators

Autonomous

Decoupled

Isolated

Service Discovery

Transient Failures Handling

Resiliency

Health Checks

Retries with Exponential Backoff

Circuit Breakers

Polly

Nomad & addressable services

Thumbnail

Service

Thumbnail

ServicePhoto Share

Service

Photo Share

Service

Photo Share

Service

Photo Share

Service
Thumbnail

Service
Photo Share

Service

node.js

Thumbnail

Service

.NET

Photo Share

Service

V1

Thumbnail

Service

V1

Thumbnail

Service

V2

Traditional application approach Microservices application approach

• A microservice application

segregates functionality into

separate smaller services.

• Scales out by deploying each

service independently with

multiple instances across

servers/VMs

• A traditional application has

most of its functionality within a

few processes that are

componentized with layers and

libraries.

• Scales by cloning the app on

multiple servers/VMs

App 1 App 2App 1

• Single monolithic database

• Tiers of specific technologies

Data in Traditional approach Data in Microservices approach

• Graph of interconnected microservices

• State typically scoped to the microservice

• Remote Storage for cold data

Stateful

services

Web presentation

services

Stateless

servicesSQL DB

or

No-SQL

Mobile

apps

Web Tier

Services Tier

Data Tier

Monolithic Databases are
shared across services.

Stateless services

with

separate stores

Each microservice
owns its model/data!

SQL

[…]

Database servers are
usually the bottleneck

Cache Tier

Cache doesn’t help
much for massive data

ingress (Events, IoT, etc.)

Microservices platform

Azure Other CloudsOn Premise

Infrastructure
Dev Machine

containers and microservices

Azure Service Fabric
Any OS, Any Cloud

60bn events/day

30% of Azure cores run Service FabricDesigned for mission critical tier 1 workloads

Microsoft runs its business on Service Fabric

Managed ServiceMicroservices Platform Productive Development

Built-in auto scale
Simple

Programming Models
for. NET, Java

Stateless and Stateful
microservicesHighly scalable 24 X 7 High availability

and failover

Windows and Linux
container

orchestration

DevOps and
Lifecycle management

Automated
platform upgrades

Built-in health
and diagnostics

Local development
identical to cloud

development

Tooling
with Visual Studio, VSTS

Eclipse & Jenkins

Integrated with
AppInsights and OMS

Azure Active

Directory

SQL ServerActive

Directory

Azure

data services
Azure services

Service Fabric on premises

Common
Identity

Consistent
Data Platform

Unified
Development
and DevOps

On-premises

infrastructure

Azure services

Azure Stack

Unified
Development
and DevOps

Linux Linux Linux Linux

Linux Linux Linux Linux

Linux Linux Linux Linux

Linux Linux Linux Linux

Linux Linux Linux Linux

Orchestrator’s Cluster managing microservices/containers

Clusters provide:

• High scalability

• Automatic High Availability and resiliency

• High services density per host

Official Docker Images
https://hub.docker.com

or

Cluster of

Nodes/Hosts

VM

App 1 App 2

My ASP.NET Core Services

My Docker Images

https://hub.docker.com/

CI/CD, diagnostics and monitoring

Azure Other CloudsDev Machine On Premise

Infrastructure

CI/CD

Visual
Studio/VSTS

Diagnostics
&

Monitoring

AppInsights
OMS
ELK

Splunk

1. Direct communication vs. API Gateway

2.Health checks

3.Resilient cloud applications:
o Retries with exponential backoff plus Circuit breaker

4.Async. pub/subs communication (Event Bus)

5.Scale-out with Orchestrators

Key Patterns for Microservices

Bounded Context == Business Microservice boundary

1. Simplified CQRS when using DDD in a microservice

2. Rich Domain Model vs. Anemic Domain Model

3. Domain Entity

4. Aggregates

5. Value Object

6. Domain Events (within a single microservice)

Domain-Driven Design (DDD) Patterns

Use in your

Core-Domain

microservices,

task oriented

with lots of

business rules

& transactions

The Bounded Context pattern

“Cells can exist because their membranes define

what is in and out and determine what can pass”

[Eric Evans]

Cells

Independent

Autonomous

Loosely coupled composition

Bounded Context pattern in Domain-Driven Design

A domain model applies
within a Bounded Context

In a typical enterprise
system, there are multiple
Bounded Contexts
Thus, multiple domain models

Not one big domain model across the entire
system!

Bounded Context 1

Domain
model 1

Bounded Context 2

Domain
model 2

Bounded Context == “Business Microservice” boundary

Ordering “business” microservice

Web API

Ordering.API

SQL Server

database

Worker Svc.

GracePeriod
Stateful

service

partitions

Business/logical

microservice

Gateway

service

Partition

A

Partition

n

Business/Logical Microservices

(Bounded Contexts)

Example 2 Example 3

- The Logical Architecture can be different to the Physical/Deployment Architecture

- A Bounded Context can be implemented by 1 or more services (i.e. ASP.NET Web API)

(Using Azure Service Fabric Stateful Reliable Services)

Example 1

Catalog “business” microservice

SQL Server database

Identifying a Domain Model per Microservice/BoundedContext

Conferences Management
Orders and Registration

Pricing and Marketing Payment Customer Service

Attendees

Conferences

Companies

Organizers

Country

Seats

Users

Payers

Conferences

Attendees

Buyers

Orders

Seats

Seats

Assignments

Reservation

Conferences

Promotions Payments

Seats

Returns

Customers

External

Gateways
…

Microservice 2

Microservice 1

Client WebApp MVC

Container

Container

Web API

Web API

ASP.NET Core MVC

Container

Microservice 3

Container

Web API

Client SPA WebApp

JavaScript / Angular.js

Client Mobile App

API Gateway

ASP.NET Core

Web API
Container

Back end

Traditional WebApp

Browser

HTML

HTML

JSON

JSON

Building resilient cloud applications

HTTP
Request/Response

HTTP

Request/Response

Ordering microservice

Container Web API

SQL Server

container

Docker host

Application

layer

Internal IP

and Port
External IP

and Port Ordering

database

“Catalog” API

External IP

and port

Internal IP

and port

Ordering API

SQL Server

Simplified CQRS and DDD Microservice

High-Level Design

Queries &

ViewModels

Commands &

Domain model
Updates

Reads

eShopOnContainers Microservices and Docker Containers

End-to-end solution

eShopOnContainers Reference Application - Architecture

Ordering microservice

Catalog microservice

eShop WebApp MVC

ASP.NET Core MVC

Identity microservice (STS+users)

eShop SPA Web app

TypeScript/Angular 4

eShop mobile app

Xamarin.Forms

C#

xPlat. OS:
iOS

Android

Windows

Docker Host

eShop traditional Web app

HTML

SQL Server db

Client apps

Basket microservice

Redis cache

Marketing microservice
MongoDB /

CosmosDB

SQL Server DB

SQL Server db

SQL Server db

Location microservice
MongoDB /

CosmosDB

Ordering.API

GracePeriod worker Svc.

SQL Server

database

Ordering microservice

Catalog microservice

Basket microservice

eShop WebApp MVC

Redis cache

container

container

container

Web API

Web API

Web API

ASP.NET Core MVC

Identity microservice (STS+users)

container

Web API

eShop SPA Web app

TypeScript/Angular 2

eShop mobile app

Xamarin.Forms

C#

xPlat. OS:
iOS

Android

Windows

Docker Host

eShop traditional Web app

HTML

SQL Server

database

SQL Server

database

Client apps

Container

Linux Containers

Windows Containers

.NET Core

.NET Framework

Foundational

Development technologies

Exploring Microservices

Architecture/Design/Development

Deployment

Development

Dev environment

Cloud infrastructure and

Specific Orchestrators

Production-Ready Microservices

Service Bus SQL Database

Cosmos DB

Redis Cache

BLOB Storage

Azure Service Fabric

Azure Container Service
Mesos DC/OS

Kubernetes

Docker Swarm

Key Vault

Other Cloud

Infrastructure

Orchestrators

Infrastructure

Decisions

eShopOnServiceFabric, eShopOnKubernetes

eShopOnSwarm , eShopOnDCOS, etc.
Forks/Flavors

+

Production environment

Nevin Dong 董乃文
Principle Technical Evangelist

Microsoft Cooperation

